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ABSTRACT
On September 23, 2000, a jazz group performed in a
concert hall at McGill University in Montreal and the
recording engineers mixing the 12 channels of
uncompressed PCM audio during the performance were not
in a booth at the back of the hall, but rather in a theatre at
the University of Southern California in Los Angeles. To
our knowledge, this is the first time that live audio of this
quality has been streamed over the Internet.

This paper describes the hardware configuration and
software system used for the demonstration, explaining the
motivation for our approach and summarizing some of the
important lessons learned during the development process.
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1 INTRODUCTION
Real-time transmission of audio data over the Internet has
become relatively commonplace, but the quality and
number of channels has so far been severely limited by
bandwidth constraints. With the ongoing growth of new,
high speed networks comes the potential for high-fidelity,
multi-channel audio distribution.

Our work in this area began in 1999, in cooperation with
the Audio Engineering Society's Technical Committee for
Networked Audio Systems (TCNAS) and Dolby
Laboraties, when we developed protocols [9] for reliable
real-time streaming of AC-3 (encoded Dolby 5.1) audio
streams at 448 kbps [1], transported over a 1.5 Mbps
AES/EBU carrier.   The technology was first demonstrated
at the AES 107 th Convention in New York, where a concert
taking place at McGill University's Redpath Hall was
streamed live to New  York University's Cantor Hall,
without interruption, despite congestion on the network
link.  While this served as an interesting and compelling
demonstration of networked audio far beyond the
limitations of bandwidth-starved MP3 files and RealAudio
streams, this early demonstration was still, for all intents
and purposes, a one-way event, in which the audience in
New York had no control over the playback beyond simple

adjustment of their local sound system.  Our next goal was
to demonstrate similar networked technology in a context
where the remote end was really in control, hence, the idea
for a live, remote mix of high fidelity audio, suitable for
recording studio applications.

This culminated in a demonstration, at last fall's AES 109th

Convention in Los Angeles, of transcontinental streaming
of uncompressed mulitchannel audio between McGill
University in Montreal and the University of Southern
California, in LA, hence, the "Recording Studio that Spans
a Continent."  The bandwidth required for his high-quality
audio data exceeded 28 megabits per second (Mbps),
roughly 500 times the capacity of an analog telephone line!
The remainder of this paper describes the technical details
at both the audio and computer network level, as well as
future directions of the research.  First, we begin with a
high-level summary of the event.

Figure 1. The microphone array used at Redpath
Hall, McGill University.  Note that some of the 12
channels of audio were fed by a mix of more than one
microphone.



2 THE SETUP
Analog audio signals from the microphone array at McGill
University in Montreal (see Figure 1) were passed through
a pre-amp into A/D converters, which provided our
computer with a 12-channel digital data stream at
24bit/96kHz, which was then packetized and transmitted
over the Canarie CA*net 3 optical network and high speed
Internet2 network.  On the receiving end at the Norris
Theater of the University of Southern California, the
opposite process took place, with data passed through D/A
converters and mixed by the recording engineers locally.
The end-to-end audio signal path is illustrated below in
Figure 2.  The sound system was composed of:

• bi-amplified JBL 4648A and a 2446H compression
driver with horn for left-center-right channels,
amplified with BGW 750 Watt amplifiers

• JBL 4645 (18") subs, amplified with a 750 Watt BGW
amplifier

• 12 JBL 3310 left/right surrounds, amplified with 3
BGW 350 Watt amplifiers

Brant Biles of Mi Casa Multimedia mixed the 12 source
channels into the 5.1-channel sound system of the Norris
Theater, wrapping the audience with trombones, trumpets
and saxes of the McGill Jazz Orchestra and placing the
piano and guitar in the front stereo at the left, and the bass
and drums in the front stereo at the right. He skillfully used
the on-board compressors and equalizers of the Sony
DMX-R100 to bring out the presence and blend of the
ensemble, achieving a very impressive overall presentation.
Most of McGill's room reverberation was captured by the
individual group microphones (DPA 4011) with a touch
added from the dedicated pair of ambient DPA 4006
microphones. Biles switched off the rear loudspeakers to
ensure that everyone in the theatre, including the audience
at the rear, would hear a wide horizontal image of the band.

The sonic result was an exceptional realism and fullness of
musical experience.

The mixing desk for the event was the new Sony DMX-
R100 Compact Digital Console running at 96kHz locked
into the six pairs of high-speed AES/EBU signals supplied
by Mytek 96/24 D/A converters that served only to change
the bit stream format from lightpipe ADAT to independent
AES/EBU signals. Once mixed digitally into six 96/24
outputs in the Sony console, the signals were converted to
analog by an additional Mytek 96/24 D/A converter before
being sent to the theatre's 5.1 monitoring system.

For the demonstration, audio data was sampled by Mytek
Digital 24bit/96kHz analog-to-digital converters and sent
through an ADAT lightpipe (4 channels per pipe) to an
RME Hammerfall Digi 9652 audio interface, installed on a
PIII-733 PC running Red Hat Linux.  Our software
managed the reliable transport of the data over the Internet,
using special thread scheduling techniques to ensure the
precise timing of data transfers to and from the audio
devices.

We had also planned to demonstrate transmission of data
compressed using the MPEG-2 Advanced Audio Coding
library developed by the Franuhofer IIS-A, but time
limitations prevented us from completing this component.

In parallel with the audio, an MPEG-2 stream provided
video, using Cisco System’s IP/TV system. However, since
our audio software had no way to communicate with the
video system, the two streams had to be synchronized
manually to the three second delay imposed by IP/TV.

3 SOFTWARE STRUCTURE
Our initial design, used in 1999, was based in part on the
Adaptive File Distribution System (AFDP) [2], which
provides efficient and reliable delivery of a file to multiple
hosts on an internet, using an RTP-like protocol on top of
UDP.  The fundamental difference between AFDP and
streaming audio is that file distribution is generally not
bound by real-time constraints.  For a streaming audio
application, we must trade a small amount of reliability in
exchange for real-time performance.  While the AFDP
model proved sufficient for the modest demands of AC-3
audio, it was readily apparent that the timing demands of
uncompressed PCM 24/96 audio required a more
aggressive system, both at the network level and in terms of
interaction with the audio hardware.

The PCI-based RME Hammerfall audio interface contains a
ring buffer divided into a small number of segments of
programmable length, thus providing sufficient in-memory
buffering of samples between the PC and the ADAT Mytek
D/A and A/D converters. Reading from the audio device
thus proved relatively simple; the read thread simply
blocked on the device waiting for data to become available.

Figure 2. The audio signal path between McGill
University and the University of Southern California.



However, on the write side, the risk exists of both buffer
overrun and underrun.  Fortunately, the ALSA drivers used
to communicate with the Hammerfall hardware were
designed to assist in maintaining the buffer at a safe level.

For a number of reasons, including minimising latency,
keeping the write thread well centered in the output audio
buffer, controlling software buffer use, and eliminating
variations in performance that can result in false detection
of late data by the networking software, it was necessary
for the read and write threads to activate at regular
intervals.  However, as discussed in Section 6, the Linux
system scheduler runs at only 100 Hz, a very low rate for
audio applications.  As the various threads in our code have
to juggle network I/O, audio hardware I/O, and buffer
management within strict time constraints, it was critical to
provide very tight bounds on these operations. These
considerations and a desire for scalability to very high data
rates led us to avoid buffer copying as much as possible.

Thus, we began the design of a new, highly flexible
transport protocol, implemented as a widely adaptable
high-throughput software system using no specialized or
tightly-coupled code structures.  The overall architecture is
modular but non-stratified; protocols, local I/O processes
and codecs run as peer threads. The program supports
multiple simultaneous reader modules and can be
configured as a local format converter, as a server, as a
client, or as a minimal-delay relay.

The top-level program is compiled as a registry of these
modules, allowing for simple command-line configuration
of the software signal path through the shared core, in what
amounts to an "inverted library" architecture.

The central organizing abstraction and the internal
communication path, as illustrated in Figure 3, is a circular
array of frame slots (a ringbuffer), which modules can
address either randomly, subject to windowing constraints,
or with self-locking cursors. The circular structure is used
not only as a non-copying buffer shuttle but as the main
temporal abstraction, with synchronous events being
launched from an integrated timing wheel.

The ringbuffer abstraction pprovides synchronization
between modules, local data transport, fragmentation and
reassembly.  The remainder of this section describes each
of these services in more detail.

Synchronization
The ringbuffer frames contain readers/writer locks to
coordinate access.  Most modules access the ringbuffer
through a sliding cursor which maintains the appropriate
locks automatically. This means that sequential data
sources and sinks stay in synchrony without further effort.

Modules like the network receiver and the network resend
requester access the ringbuffer asynchronously as if it were

an unbounded linear array; each access is directed to the
unique ringbuffer slot that would correspond to the desired
index. The access fails cleanly if either the requisite lock
cannot be acquired or the slot's timestamp does not match
the intended access, meaning that the frame requested is not
within the window of frames that currently have a mapping
into the ringbuffer. In this case the frame is considered lost
and failure is passed back to the caller for higher level
recovery.

Timing
The labels on the ringbuffer frames are updated, and the
window advanced, by a dummy writer process. This
ensures that each frame bears a real-time label consistent
with the current system state.  While this function could
have been integrated with a synchronous data source, if any
exists, maintaining it as a separate pseudo-module
simplified the coding of the network data receiver, which
can receive packets badly out of order.

Local Data Transport
Frames are actually stored in the ringbuffer, providing the
main data path between the configured modules. This
operates without any copy operations: the data source
maintains a pool of physical buffers into which incoming
data are read, and exchanges newly filled buffers with any
stale buffers in the current frame under a writer lock; the

Figure 3. The server and client software structure,
constructed around the ringbuffer, which serves as a
common abstraction to both entities.



latter are returned to the free pool. This minimizes the
duration that the unshareable writer lock must be held. The
data sink(s) examine the contents of frames under readers
locks, and are designed to do so with the smallest amount
of copying feasible, even at the expense of holding the lock
longer than would otherwise be necessary. Indeed, the
cursors used for reading are allowed to cover multiple
adjacent frames at once, to simplify rebuffering, should it
be necessary. This is acceptable because the readers' locks
can be shared between multiple consumer modules.

Fragmentation
The frame entries in the ringbuffer are stored as arrays of
pre-formatted network packet images.  This is feasible
because a fixed packet size is used throughout the
implementation. All modules have to cope with the
resultant fragmentation, though the fragment headers
themselves are concealed from modules outside the
networking code.

Reassembly
Apart from maintaining statistics, the client does not
actually distinguish between data initially sent and data
resent; received data packets are inserted into the ringbuffer
obliviously. Incomplete frames are detected by the resend
mechanism simply by reading the frame and noting
whether all fragments have been updated.

With the software structure taken care of by the ringbuffer
and its associated services, we now turn to a general
description of the transport protocol that manages the
exchange of data between two hosts.

4 TRANSPORT PROTOCOL
The protocol is implemented with a synchronous sliding
window of fixed duration in real-time. Data is initially sent
isochronously, as soon as an entire frame becomes
available. Explicit timestamps are not used; instead they are
inferred from sequence numbers.

For any real-time streaming system, a key concern is how
to respond when transmitted data fails to arrive at the client
in a timely manner, which may be the result of either
network delay or packet loss.  In either case, if the client
cannot tolerate missing packets, as is the case for an audio
stream, some retransmission protocol or recovery technique
is required to deal with this situation.

Resend Requests and Retransmission Handling
Resends are driven by automatically generated client
requests1 based on an optimal schedule: requests are issued
whenever all packets have not arrived by the frame's
anticipated arrival time or at any multiple of a round trip

                                                          
1 This approach is commonly referred to as automatic
repeat request, or ARQ.

time (RTT) thereafter, the moment at which the response to
a presumed previous resend request has become overdue. A
resend request specifies the frame numbers that have just
become overdue, and a bitmap of the missing packets
within each frame. Basic statistics, including current RTT
estimates, are transmitted from the client to the server with
any resend request.

Redundant resends are suppressed on the server side by
combining the received client-measured statistics with the
server's own knowledge of its recent actions. A resend is
redundant if the information requested was sent sufficiently
recently that it is predicted to have crossed the resend
request in transit; this could happen in the case of
synchronization loss, or if the resend traffic is especially
high.  The server thus maintains no state on behalf of the
client; this is intended to facilitate adaptation to a multicast
environment.

Outgoing packets are labeled with a priority, to be used in
bandwidth control by a traffic shaper. Data being sent for
the first time are in general given a higher priority than
resends, and, ideally, packets containing higher-
significance data, such as control information and higher
order sound sample bits, are given priority over less
important data. However, no throttling was used for the
AES demonstration; this is certainly not good network
citizenship. As a result, sufficiently severe network
contention could potentially have caused our network
utilization to increase to the limit of our 100Mbps local
connection.

What happens in this situation can be described as a
positive feedback loop: a competing data stream causes
congestion, which leads to packet loss in our application.
Retransmission is then requested to recover the lost data.  If
the competing stream persists during the retransmission,
congestion becomes even more severe, leading to a further
increase of packet loss, and so forth, eventually leading to
congestion collapse.

While this potentially disastrous situation did not occur in
the event, our approach should not be recommended as
general practice!  Instead, congestion avoidance and
prevention mechanisms need to be introduced.  For real-
time streaming applications, these must be less drastic than
TCP, which simply reduces transmission rate, yet still
effective in reducing network load.  Section 5 describes a
promising approach in this direction that we are presently
exploring.

RTP and TCP vs. UDP
Although it would have been straightforward to implement
this particular strategy using the physical formatting
conventions of RTP [6] for data packets, we elected to
maintain the flexibility of our software as a protocol
research vehicle, using semi-automatic generation of packet



layouts according to the requirements of a protocol variant
instead of fixed conventions. This has cost little and
benefitted much, given that RTP implementations, unlike
TCP, are typically very tightly bound to particular
applications rather than appearing in reusable toolsets or
kernel modules.

As to control packets, we have shifted from the approach of
our earlier protocol, which made limited use of TCP [4] for
the handling of resend requests and retransmissions, to
using raw UDP [5] for everything.

Upon reflection, the use of TCP for retransmission
handling was rather naïve. Packet loss is usually a sign of
network congestion, a condition that causes TCP to activate
its congestion avoidance mechanism [3].  Under conditions
of mild congestion, this means a higher than usual delay for
the delivery of data, as TCP attempts to be well behaved for
the common good.  However, as congestion increases, TCP
backs off further, leading to delays that could well be in
excess of those tolerable by the application. Worse yet,
TCP's guarantee of in order data delivery means that any
difficulty in delivering retransmission requests will cause
subsequent requests to pile up behind it, until the situation
is resolved. When normal delivery is eventually resumed,
one or more round trip times later, this produces a burst of
delayed resend requests, whose servicing may in turn
actively contribute to an ongoing congestion problem.

Thus, although an overly aggressive UDP transmission
scheme could well exacerbate transient network
congestion, the alternative of relying solely on TCP to deal
with this situation is unacceptable when robustness is a
critical concern.  With UDP, we are free to implement
whatever retransmission scheme we deem appropriate,
without being constrained by the conservative nature of
TCP. Furthermore, by treating failures as independent,
unordered events, we can reduce the tendency of the
protocol to become increasingly bursty under load.

5 CONGESTION CONTROL
Layered coding congestion control is a common method
used in real time multimedia streaming [7][8].  Rather than
reducing transmission rate, layered coding reduces the data
resolution by chopping the least significant bits of each
sample, and hence reduces bandwidth demands during
times of congestion.

In practice, it is useful to transmit all the bits of a signal,
broken into separate logical channels (e.g. bits 0-3 on
channel 1, bits 4-7 on channel 2, etc.) and allow clients to
subscribe only to those channels necessary to reconstruct
the audio samples to the desired level of resolution.   For
example, in the case of a multicast transmission to a
heteregenous client base, where only a subset of the clients
are experiencing congestion, this scheme permits
uncongested clients to receive the full resolution of the

data.

Although there is no theoretical barrier to varying the
information rate of an encoded signal arbitrarily, the
current generation of audio compression algorithms (e.g.
AC-3, AAC, MP3) based on frequency domain
transformations do not support the dynamic variation of
stream quality through bit decimation, as their encodings
are highly non-linear. Furthermore, varying the encoding
resolution dynamically on such signals typically introduces
audible artifacts as lookup tables and analysis window sizes
change. The prominence of these artifacts varies between
algorithms, and is reported to be not too severe for AAC,
though it suffers from relatively large granularity in the
available quality steps. Fortunately, a new generation of
codecs is starting to appear, including the QDX perceptual
codec from QDesign, which are designed with continuous
adaptation of the bit-rate specifically in mind [Beaton,
personal communication].

For the streaming of uncompressed PCM data, however,
the bit decimation approach offers a straightforward
mechanism for congestion control [9].  Applying the
layered coding technique to the uncompressed audio
stream, congested clients can subscribe to just enough
channels to provide the n most significant bits of each
sample, where n decreases monotonically with observed
congestion. Unfortunately, the simplicity of this scheme is
also its weakness, as the bit decimation makes no
distinction between potentially redundant audio channels,
nor does it allow the client to choose between signal
degradation and loss of channel separation.

In order to obtain these capabilities, it is first necessary to
encode the data into sum2  (Σ) and difference (∆) signals
through a reversible transformation.  For the simple case of
two-channel (A and B) stereo, the corresponding
differential encoding is found by:

 = (A + B)/2

 = (A  B)/2

Assuming that the Σ and ∆ values were each transmitted as
multiple logical channels , the client would then be free to
opt for a high quality monophonic signal in lieu of an
incrementally degraded stereo signal during periods of
congestion.  Obviously, for practical application in this
case, it would make sense for the client to make a smooth,
rather than abrupt, transition from stereophonic to
monophonic playback.

Although it is beyond the scope of this paper to describe in

                                                          
2 When normalized by the number of channels, this value
represents the monophonic version of the signal.



detail the extensions to this framework related to
multichannel audio, the basic idea is that as one adds more
physical signal sources, clients should simply be able to
subscribe to additional logical channels, while bandwidth
remains available.  As congestion sets in, clients would
then be able to choose appropriate trade-offs between
signal resolution and channel separation, as desired by
each, independently.

6 IMPLEMENTATION ISSUES
When dealing with audio data at rates approaching 28
Mbps, practical considerations play a significant role.  This
section describes some of the issues we faced in moving
from a carefully considered design to a full implementation
suitable for demonstration purposes in front of a discerning
audience.

Timing
Striking the delicate balance between the timing constraints
imposed by the operating system and those of the audio
devices can pose serious problems for the coder, and often
ones that can only be tackled empirically.

Because of system timing effects, we were eventually
forced to accept a 48Hz frame rate, which is extremely low
for this kind of application, and results in very large and
highly fragmented frames. Higher frequencies caused
various strange problems, which we attribute to the fact that
we were using out-of-the-box Red Hat Linux, with a 100Hz
system scheduling clock.  While our code was designed to
operate with smaller, more frequent frames, the 48Hz frame
rate guarantees us a valuable two full iterations of the
scheduling mechanism per frame.

Synchronization
Another issue we faced was how to deal with the clock
differences between two audio devices connected by a
computer network.   Would the drift between client and
server hardware result in a timing problem, especially if the
demonstration was run for a full hour?  If so, then the
complexity of our buffer management would have to
increase considerably, since we could no longer guarantee
that "one byte produced equals one byte consumed by the
hardware."

Fortunately, as it turned out, the quality of time bases has
improved considerably since Internet protocols were
invented. While it was once unthinkable to let the end
points take care of their own clocks and assume they would
remain synchronized, we found that source-destination
clock synchronization now works with audio devices, even
over one hour and several thousand kilometers of
intervening network infrastructure.

Drivers
One of the most serious challenges we faced was
interfacing the Mytek Digital 96/24 A/D and D/A

converters through the RME Hammerfall Digi 9652 PCI
card under Red Hat Linux. As we painfully discovered, the
ALSA drivers we were attempting to use had never been
tested on the Hammerfall at data rates of 24bit/96kHz.  In
fact, handling the unexpected format and channel
rearrangement that the Hammerfall provides under these
settings triggered a significant rewrite of the driver code.
This problem was finally solved less than one week before
the demonstration, leaving us only a few days to complete
the rest of the coding and debugging.

7 CONCLUSIONS AND FUTURE WORK
Our transmission of 12 channels of 24bit/96kHz PCM
audio consumed a minimum, with no retransmissions, of 28
Mbps while the video stream required an additional 3
Mbps. With moderate competing traffic on the network, our
protocol continued to deliver the audio data reliably.
During the demonstration, we observed a highly reduced
frame rate on the video signal through the IP/TV MPEG-2
display. Although we initially speculated that this was due
to bandwidth congestion, we eventually concluded that it
was more likely caused by a misconfigured ethernet switch
setting on the receive side.

We measured the total network link capacity between
McGill and USC at approximately 70 Mbps just prior to the
demonstration.  In the brief testing period that preceded the
event, we ran the protocol smoothly up to 48 Mbps by
simulating additional channels of artificial audio.

Experimentation indicated that a 4k byte fragment provided
the best performance. While this goes against conventional
expectations, which hold that a 1500 byte fragment, as the
maximum guaranteed transfer unit for an IP packet, would
yield superior performance, it is consistent with our earlier
observations [2][9].  This is likely the result of a tradeoff
against system call overhead.

In the coming months we plan to explore techniques for
dynamic bandwidth control in a multicast environment,
using the same codebase. We are also exploring automated
synchronization of various audio formats with raw video
and DV streams, for real-time streaming and editing
applications.
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